Event perception refers to people's ability to carve up continuous experience into meaningful discrete events. We speak of finishing our morning coffee, mowing the lawn, leaving work, etc. as singular occurrences that are localized in time and space. In this work, we analyze how spatiotemporal representations can be used to automatically segment continuous experience into structured episodes, and how these descriptions can be used for analogical learning. These representations are based on Hayes' notion of histories and build upon existing work on qualitative episodic memory. Our agent automatically generates event descriptions of military battles in a strategy game and improves its gameplay by learning from this experience. Episodes are segmented based on changing properties in the world and we show evidence that they facilitate learning because they capture event descriptions at a useful spatiotemporal grain size. This is evaluated through our agent's performance in the game. We also show empirical evidence that the perception of spatial extent of episodes affects both their temporal duration as well as the number of overall cases generated.