Humans possess the innate ability to extract latent visuo-lingual cues to infer context through human interaction. During collaboration, this enables proactive prediction of the underlying intention of a series of tasks. In contrast, robotic agents collaborating with humans naively follow elementary instructions to complete tasks or use specific hand-crafted triggers to initiate proactive collaboration when working towards the completion of a goal. Endowing such robots with the ability to reason about the end goal and proactively suggest intermediate tasks will engender a much more intuitive method for human-robot collaboration. To this end, we propose a learning-based method that uses visual cues from the scene, lingual commands from a user and knowledge of prior object-object interaction to identify and proactively predict the underlying goal the user intends to achieve. Specifically, we propose ViLing-MMT, a vision-language multimodal transformer-based architecture that captures inter and intra-modal dependencies to provide accurate scene descriptions and proactively suggest tasks where applicable. We evaluate our proposed model in simulation and real-world scenarios.