We propose a PnP algorithm for a camera constrained to two-dimensional movement (applicable, for instance, to many wheeled robotics platforms). Leveraging this assumption allows performance improvements over 3D PnP algorithms due to the reduction in search space dimensionality. It also reduces the incidence of ambiguous pose estimates (as, in most cases, the spurious solutions fall outside the plane of movement). Our algorithm finds an approximate solution using geometric criteria and refines its prediction iteratively. We compare this algorithm to existing 3D PnP algorithms in terms of accuracy, performance, and robustness to noise.