https://www.kaggle.com/competitions/dlsprint2/discussion/432201 along with notebooks, weights, and inference notebook.
Understanding digital documents is like solving a puzzle, especially historical ones. Document Layout Analysis (DLA) helps with this puzzle by dividing documents into sections like paragraphs, images, and tables. This is crucial for machines to read and understand these documents. In the DL Sprint 2.0 competition, we worked on understanding Bangla documents. We used a dataset called BaDLAD with lots of examples. We trained a special model called Mask R-CNN to help with this understanding. We made this model better by step-by-step hyperparameter tuning, and we achieved a good dice score of 0.889. However, not everything went perfectly. We tried using a model trained for English documents, but it didn't fit well with Bangla. This showed us that each language has its own challenges. Our solution for the DL Sprint 2.0 is publicly available at