Preterm labor (PL) has globally become the leading cause of death in children under the age of 5 years. To address this problem, this paper will provide a new approach by analyzing the EHG signals, which are recorded on the abdomen of the mother during labor and pregnancy. The EHG signal reflects the electrical activity that induces the mechanical contraction of the myometrium. Because EHGs are known to be non-stationary signals, and because we anticipate connectivity to alter during contraction, we applied the windowing approach on real signals to help us identify the best windows and the best nodes with the most significant data to be used for classification. The suggested pipeline includes i) divide the 16 EHG signals that are recorded from the abdomen of pregnant women in N windows; ii) apply the connectivity matrices on each window; iii) apply the Graph theory-based measures on the connectivity matrices on each window; iv) apply the consensus Matrix on each window in order to retrieve the best windows and the best nodes. Following that, several neural network and machine learning methods are applied to the best windows and best nodes to categorize pregnancy and labor contractions, based on the different input parameters (connectivity method alone, connectivity method plus graph parameters, best nodes, all nodes, best windows, all windows). Results showed that the best nodes are nodes 8, 9, 10, 11, and 12; while the best windows are 2, 4, and 5. The classification results obtained by using only these best nodes are better than when using the whole nodes. The results are always better when using the full burst, whatever the chosen nodes. Thus, the windowing approach proved to be an innovative technique that can improve the differentiation between labor and pregnancy EHG signals.