This study explores open questions in the application of machine learning for breast cancer detection in mammograms. Current approaches often employ a two-stage transfer learning process: first, adapting a backbone model trained on natural images to develop a patch classifier, which is then used to create a single-view whole-image classifier. Additionally, many studies leverage both mammographic views to enhance model performance. In this work, we systematically investigate five key questions: (1) Is the intermediate patch classifier essential for optimal performance? (2) Do backbone models that excel in natural image classification consistently outperform others on mammograms? (3) When reducing mammogram resolution for GPU processing, does the learn-to-resize technique outperform conventional methods? (4) Does incorporating both mammographic views in a two-view classifier significantly improve detection accuracy? (5) How do these findings vary when analyzing low-quality versus high-quality mammograms? By addressing these questions, we developed models that outperform previous results for both single-view and two-view classifiers. Our findings provide insights into model architecture and transfer learning strategies contributing to more accurate and efficient mammogram analysis.