In this paper, we propose an online algorithm "mspace" for forecasting node features in temporal graphs, which adeptly captures spatial cross-correlation among different nodes as well as the temporal autocorrelation within a node. The algorithm can be used for both probabilistic and deterministic multi-step forecasting, making it applicable for estimation and generation tasks. Comparative evaluations against various baselines, including graph neural network (GNN) based models and classical Kalman filters, demonstrate that mspace performs at par with the state-of-the-art and even surpasses them on some datasets. Importantly, mspace demonstrates consistent robustness across datasets with varying training sizes, a notable advantage over GNN-based methods requiring abundant training samples to learn the spatiotemporal trends in the data effectively. Therefore, employing mspace is advantageous in scenarios where the training sample availability is limited. Additionally, we establish theoretical bounds on multi-step forecasting error of mspace and show that it scales as $O(q)$ for $q$-step forecast.