While recent research has progressively overcome the low-resolution constraint of one-shot face video re-enactment with the help of StyleGAN's high-fidelity portrait generation, these approaches rely on at least one of the following: explicit 2D/3D priors, optical flow based warping as motion descriptors, off-the-shelf encoders, etc., which constrain their performance (e.g., inconsistent predictions, inability to capture fine facial details and accessories, poor generalization, artifacts). We propose an end-to-end framework for simultaneously supporting face attribute edits, facial motions and deformations, and facial identity control for video generation. It employs a hybrid latent-space that encodes a given frame into a pair of latents: Identity latent, $\mathcal{W}_{ID}$, and Facial deformation latent, $\mathcal{S}_F$, that respectively reside in the $W+$ and $SS$ spaces of StyleGAN2. Thereby, incorporating the impressive editability-distortion trade-off of $W+$ and the high disentanglement properties of $SS$. These hybrid latents employ the StyleGAN2 generator to achieve high-fidelity face video re-enactment at $1024^2$. Furthermore, the model supports the generation of realistic re-enactment videos with other latent-based semantic edits (e.g., beard, age, make-up, etc.). Qualitative and quantitative analyses performed against state-of-the-art methods demonstrate the superiority of the proposed approach.