Conventional multi-user scheduling schemes are designed based on instantaneous channel state information (CSI), indicating that decisions must be made every transmission time interval (TTI) which lasts at most several milliseconds. Only quite simple approaches can be exploited under this stringent time constraint, resulting in less than satisfactory scheduling performance. In this paper, we investigate the scheduling problem of a fixed wireless access (FWA) network using only statistical CSI. Thanks to their fixed positions, user terminals in FWA can easily provide reliable large-scale CSI lasting tens or even hundreds of TTIs. Inspired by this appealing fact, we propose an \emph{`once-and-for-all'} scheduling approach, i.e. given multiple TTIs sharing identical statistical CSI, only a single high-quality scheduling decision lasting across all TTIs shall be taken rather than repeatedly making low-quality decisions every TTI. The proposed scheduling design is essentially a mixed-integer non-smooth non-convex stochastic problem with the objective of maximizing the weighted sum rate as well as the number of active users. We firstly replace the indicator functions in the considered problem by well-chosen sigmoid functions to tackle the non-smoothness. Via leveraging deterministic equivalent technique, we then convert the original stochastic problem into an approximated deterministic one, followed by linear relaxation of the integer constraints. However, the converted problem is still highly non-convex due to implicit equation constraints introduced by deterministic equivalent. To address this issue, we employ implicit optimization technique so that the gradient can be derived explicitly, with which we propose an algorithm design based on accelerated Frank-Wolfe method. Numerical results verify the effectiveness of our proposed scheduling scheme over state-of-the-art.