When our eyes are presented with the same image, the brain processes it to view it as a single coherent one. The lateral shift in the position of our eyes, causes the two images to possess certain differences, which our brain exploits for the purpose of depth perception and to gauge the size of objects at different distances, a process commonly known as stereopsis. However, when presented with two different visual stimuli, the visual awareness alternates. This phenomenon of binocular rivalry is a result of competition between the corresponding neuronal populations of the two eyes. The article presents a comparative study of various dynamical models proposed to capture this process. It goes on to study the effect of a certain parameter on the rate of perceptual alternations and proceeds to disprove the initial propositions laid down to characterise this phenomenon. It concludes with a discussion on the possible future work that can be conducted to obtain a better picture of the neuronal functioning behind this rivalry.