We study efficient mechanism design for allocating multiple heterogeneous objects. We aim to maximize the residual surplus, the total value generated from an allocation minus the costs for screening agents' values. We discover a robust trend indicating that no-screening mechanisms such as serial dictatorship with exogenous priority order tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on this implication, we propose the register-invite-book system (RIB) as an efficient system for scheduling vaccination against pandemic diseases.