In the field of dynamic functional connectivity, the sliding-window method is widely used and its stability is generally recognized. However, the sliding-window method's data processing within the window is overly simplistic, which to some extent limits its effectiveness. This study proposes a feature expansion method based on random convolution, which achieves better and more noise-resistant results than the sliding-window method without requiring training. Experiments on simulated data show that the dynamic functional connectivity matrix and time series obtained using the random convolution method have a higher degree of fit (95.59\%) with the standard answers within shorter time windows, compared to the sliding-window method (45.99\%). Gender difference studies on real data also reveal that the random convolution method uncovers more gender differences than the sliding-window method. Through theoretical analysis, we propose a more comprehensive convolutional functional connectivity computation model, with the sliding-window method being a special case of this model, thereby opening up vast potential for research methods in dynamic functional connectivity.