neuroevo.io), that allows users to interactively design and train neural network classifiers using evolutionary and particle swarm algorithms. The classification problem and training data are provided by the user and, upon completion of the training process, the best classifier is made available to download and implement in Python, Java, and JavaScript. NeuroEvo is a cloud-based application that leverages GPU parallelization to improve the speed with which the independent evolutionary steps, such as mutation, crossover, and fitness evaluation, are executed across the population. This paper outlines the training algorithms and opportunities for users to specify design decisions and hyperparameter settings. The algorithms described in this paper are also made available as a Python package, neuroevo (PyPI: https://pypi.org/project/neuroevo/).
Evolutionary algorithms (EAs) provide unique advantages for optimizing neural networks in complex search spaces. This paper introduces a new web platform, NeuroEvo (