Multiple Input-Multiple Output (MIMO) is a key enabler of higher data rates in the next generation wireless communications. However in MIMO systems, channel estimation and equalization are challenging particularly in the presence of rapidly changing channels. The high pilot overhead required for channel estimation can reduce the system throughput for large antenna configuration. In this paper, we provide an iterative matrix decomposition algorithm for near-pilotless or blind decoding of MIMO signals, in a single carrier system with frequency domain equalization. This novel approach replaces the standard equalization and estimates both the transmitted data and the channel without the knowledge of any prior distributions, by making use of only one pilot. Our simulations demonstrate improved performance, in terms of error rates, compared to the more widely used pilot-based Maximal Ratio Combining (MRC) method.