Localizing near-field sources considering practical arrays is important in wireless communications. Array-based apertures exhibit mutual coupling between the array elements, which can significantly degrade the performance of the localization method. In this paper, we propose two methods to localize near-field sources by direction of arrival (DOA) and range estimations in the presence of mutual coupling. The first method utilizes a two-dimensional search to estimate DOA and the range of the source. Therefore, it suffers from a high computational load. The second method reduces the two-dimensional search to one-dimensional, thus decreasing the computational complexity while offering similar DOA and range estimation performance. Besides, our second method reduces computational time by over 50% compared to the multiple signal classification (MUSIC) algorithm.