This paper explores the potential of near-field beamforming (NFBF) in integrated sensing and communication (ISAC) systems with extremely large-scale arrays (XL-arrays). The large-scale antenna arrays increase the possibility of having communication users and targets of interest in the near field of the base station (BS). The paper first establishes the models of electromagnetic (EM) near-field spherical waves and far-field plane waves. With the models, we analyze the near-field beam focusing ability and the far-field beam steering ability by finding the gain-loss mathematical expression caused by the far-field steering vector mismatch in the near-field case. We formulate the NFBF design problem as minimizing the weighted summation of radar and the communication beamforming errors under a total power constraint and solve this quadratically constrained quadratic programming (QCQP) problem using the least squares (LS) method. Moreover, the Cram\'er-Rao bound (CRB) for target parameter estimation is derived to verify the performance of NFBF. Furthermore, we also perform power minimization using convex optimization while ensuring the required communication and sensing quality-of-service (QoS). The simulation results show the influence of model mismatch on near-field ISAC and the performance gain of transmit beamforming from the additional distance dimension of near-field.