The optimization inspired network can bridge convex optimization and neural networks in Compressive Sensing (CS) reconstruction of natural image, like ISTA-Net+, which mapping optimization algorithm: iterative shrinkage-thresholding algorithm (ISTA) into network. However, measurement matrix and input initialization are still hand-crafted, and multi-channel feature map contain information at different frequencies, which is treated equally across channels, hindering the ability of CS reconstruction in optimization-inspired networks. In order to solve the above problems, we proposed MC-ISTA-Net