Multi-domain text classification (MDTC) endeavors to harness available resources from correlated domains to enhance the classification accuracy of the target domain. Presently, most MDTC approaches that embrace adversarial training and the shared-private paradigm exhibit cutting-edge performance. Unfortunately, these methods face a non-negligible challenge: the absence of theoretical guarantees in the design of MDTC algorithms. The dearth of theoretical underpinning poses a substantial impediment to the advancement of MDTC algorithms. To tackle this problem, we first provide a theoretical analysis of MDTC by decomposing the MDTC task into multiple domain adaptation tasks. We incorporate the margin discrepancy as the measure of domain divergence and establish a new generalization bound based on Rademacher complexity. Subsequently, we propose a margin discrepancy-based adversarial training (MDAT) approach for MDTC, in accordance with our theoretical analysis. To validate the efficacy of the proposed MDAT method, we conduct empirical studies on two MDTC benchmarks. The experimental results demonstrate that our MDAT approach surpasses state-of-the-art baselines on both datasets.