This paper introduces an interdisciplinary framework called Machine Psychology, which merges principles from operant learning psychology with a specific Artificial Intelligence model, the Non-Axiomatic Reasoning System (NARS), to enhance Artificial General Intelligence (AGI) research. The core premise of this framework is that adaptation is crucial to both biological and artificial intelligence and can be understood through operant conditioning principles. The study assesses this approach via three operant learning tasks using OpenNARS for Applications (ONA): simple discrimination, changing contingencies, and conditional discrimination tasks. In the simple discrimination task, NARS demonstrated rapid learning, achieving perfect accuracy during both training and testing phases. The changing contingencies task showcased NARS's adaptability, as it successfully adjusted its behavior when task conditions were reversed. In the conditional discrimination task, NARS handled complex learning scenarios effectively, achieving high accuracy by forming and utilizing intricate hypotheses based on conditional cues. These findings support the application of operant conditioning as a framework for creating adaptive AGI systems. NARS's ability to operate under conditions of insufficient knowledge and resources, coupled with its sensorimotor reasoning capabilities, establishes it as a robust model for AGI. The Machine Psychology framework, by incorporating elements of natural intelligence such as continuous learning and goal-driven behavior, offers a scalable and flexible approach for real-world applications. Future research should investigate using enhanced NARS systems, more advanced tasks, and applying this framework to diverse, complex challenges to further progress the development of human-level AI.