Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges to developing the early diagnosis tool and effective treatment. Machine Learning (ML), an area of Artificial Intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how Machine Learning (ML) and Deep Learning (DL) are being used to help in the early identification of numerous diseases. To begin, a bibliometric study of the publication is given using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in Machine Learning-based Disease Diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, the paper highlights key results and provides insight into future trends and opportunities in the MLBDD area.