We investigate implications of the (extended) low-degree conjecture (recently formalized in [MW23]) in the context of the symmetric stochastic block model. Assuming the conjecture holds, we establish that no polynomial-time algorithm can weakly recover community labels below the Kesten-Stigum (KS) threshold. In particular, we rule out polynomial-time estimators that, with constant probability, achieve correlation with the true communities that is significantly better than random. Whereas, above the KS threshold, polynomial-time algorithms are known to achieve constant correlation with the true communities with high probability[Mas14,AS15]. To our knowledge, we provide the first rigorous evidence for the sharp transition in recovery rate for polynomial-time algorithms at the KS threshold. Notably, under a stronger version of the low-degree conjecture, our lower bound remains valid even when the number of blocks diverges. Furthermore, our results provide evidence of a computational-to-statistical gap in learning the parameters of stochastic block models. In contrast to prior work, which either (i) rules out polynomial-time algorithms for hypothesis testing with 1-o(1) success probability [Hopkins18, BBK+21a] under the low-degree conjecture, or (ii) rules out low-degree polynomials for learning the edge connection probability matrix [LG23], our approach provides stronger lower bounds on the recovery and learning problem. Our proof combines low-degree lower bounds from [Hopkins18, BBK+21a] with graph splitting and cross-validation techniques. In order to rule out general recovery algorithms, we employ the correlation preserving projection method developed in [HS17].