Electrical network frequency (ENF) is the signature of a power distribution grid which represents the nominal frequency (50 or 60 Hz) of a power system network. Due to load variations in a power grid, ENF sequences experience fluctuations. These ENF variations are inherently located in a multimedia signal which is recorded close to the grid or directly from the mains power line. Therefore, a multimedia recording can be localized by analyzing the ENF sequences of that signal in absence of the concurrent power signal. In this paper, a novel approach to analyze location forensics using ENF sequences extracted from a number of power and audio recordings is proposed. The digital recordings are collected from different grid locations around the world. Potential feature components are determined from the ENF sequences. Then, a multi-class support vector machine (SVM) classification model is developed to validate the location authenticity of the recordings. The performance assessments affirm the efficacy of the presented work.