Spatial division multiple access (SDMA) is essential to improve the spectrum efficiency for multi-user multiple-input multiple-output (MIMO) communications. The classical SDMA for massive MIMO with hybrid precoding heavily relies on the angular orthogonality in the far field to distinguish multiple users at different angles, which fails to fully exploit spatial resources in the distance domain. With dramatically increasing number of antennas, extremely large-scale antenna array (ELAA) introduces additional resolution in the distance domain in the near field. In this paper, we propose the concept of location division multiple access (LDMA) to provide a new possibility to enhance spectrum efficiency. The key idea is to exploit extra spatial resources in the distance domain to serve different users at different locations (determined by angles and distances) in the near field. Specifically, the asymptotic orthogonality of beam focusing vectors in the distance domain is proved, which reveals that near-field beam focusing is able to focus signals on specific locations to mitigate inter-user interferences. Simulation results verify the superiority of the proposed LDMA over classical SDMA in different scenarios.