This research investigates whether OpenAI's GPT-4, a state-of-the-art large language model, can accurately classify the political bias of news sources based solely on their URLs. Given the subjective nature of political labels, third-party bias ratings like those from Ad Fontes Media, AllSides, and Media Bias/Fact Check (MBFC) are often used in research to analyze news source diversity. This study aims to determine if GPT-4 can replicate these human ratings on a seven-degree scale ("far-left" to "far-right"). The analysis compares GPT-4's classifications against MBFC's, and controls for website popularity using Open PageRank scores. Findings reveal a high correlation ($\text{Spearman's } \rho = .89$, $n = 5,877$, $p < 0.001$) between GPT-4's and MBFC's ratings, indicating the model's potential reliability. However, GPT-4 abstained from classifying approximately $\frac{2}{3}$ of the dataset, particularly less popular and less biased sources. The study also identifies a slight leftward skew in GPT-4's classifications compared to MBFC's. The analysis suggests that while GPT-4 can be a scalable, cost-effective tool for political bias classification of news websites, but its use should complement human judgment to mitigate biases. Further research is recommended to explore the model's performance across different settings, languages, and additional datasets.