In this paper, we propose a novel approach for learning multi-label classifiers with the help of privileged information. Specifically, we use similarity constraints to capture the relationship between available information and privileged information, and use ranking constraints to capture the dependencies among multiple labels. By integrating similarity constraints and ranking constraints into the learning process of classifiers, the privileged information and the dependencies among multiple labels are exploited to construct better classifiers during training. A maximum margin classifier is adopted, and an efficient learning algorithm of the proposed method is also developed. We evaluate the proposed method on two applications: multiple object recognition from images with the help of implicit information about object importance conveyed by the list of manually annotated image tags; and multiple facial action unit detection from low-resolution images augmented by high-resolution images. Experimental results demonstrate that the proposed method can effectively take full advantage of privileged information and dependencies among multiple labels for better object recognition and better facial action unit detection.