It has been suggested that large language models such as GPT-4 have acquired some form of understanding beyond the correlations among the words in text including some understanding of mathematics as well. Here, we perform a critical inquiry into this claim by evaluating the mathematical understanding of the GPT-4 model. Considering that GPT-4's training set is a secret, it is not straightforward to evaluate whether the model's correct answers are based on a mathematical understanding or based on replication of proofs that the model has seen before. We specifically craft mathematical questions which their formal proofs are not readily available on the web, proofs that are more likely not seen by the GPT-4. We see that GPT-4 is unable to solve those problems despite their simplicity. It is hard to find scientific evidence suggesting that GPT-4 has acquired an understanding of even basic mathematical concepts. A straightforward way to find failure modes of GPT-4 in theorem proving is to craft questions where their formal proofs are not available on the web. Our finding suggests that GPT-4's ability is to reproduce, rephrase, and polish the mathematical proofs that it has seen before, and not in grasping mathematical concepts. We also see that GPT-4's ability to prove mathematical theorems is continuously expanding over time despite the claim that it is a fixed model. We suggest that the task of proving mathematical theorems in formal language is comparable to the methods used in search engines such as Google while predicting the next word in a sentence may be a misguided approach, a recipe that often leads to excessive extrapolation and eventual failures. Prompting the GPT-4 over and over may benefit the GPT-4 and the OpenAI, but we question whether it is valuable for machine learning or for theorem proving.