The curse of dimensionality poses a significant challenge to modern multilayer perceptron-based architectures, often causing performance stagnation and scalability issues. Addressing this limitation typically requires vast amounts of data. In contrast, Kolmogorov-Arnold Networks have gained attention in the machine learning community for their bold claim of being unaffected by the curse of dimensionality. This paper explores the Kolmogorov-Arnold representation theorem and the mathematical principles underlying Kolmogorov-Arnold Networks, which enable their scalability and high performance in high-dimensional spaces. We begin with an introduction to foundational concepts necessary to understand Kolmogorov-Arnold Networks, including interpolation methods and Basis-splines, which form their mathematical backbone. This is followed by an overview of perceptron architectures and the Universal approximation theorem, a key principle guiding modern machine learning. This is followed by an overview of the Kolmogorov-Arnold representation theorem, including its mathematical formulation and implications for overcoming dimensionality challenges. Next, we review the architecture and error-scaling properties of Kolmogorov-Arnold Networks, demonstrating how these networks achieve true freedom from the curse of dimensionality. Finally, we discuss the practical viability of Kolmogorov-Arnold Networks, highlighting scenarios where their unique capabilities position them to excel in real-world applications. This review aims to offer insights into Kolmogorov-Arnold Networks' potential to redefine scalability and performance in high-dimensional learning tasks.