Orbital angular momentum (OAM) radars are able to estimate the azimuth angle and the rotation velocity of multiple targets without relative motion or beam scanning. Moreover, OAM wireless communications can achieve high spectral efficiency (SE) by utilizing a set of information-bearing modes on the same frequency channel. Benefitting from the above advantages, in this paper, we design a novel radar-centric joint OAM radar-communication (RadCom) scheme based on uniform circular arrays (UCAs), which modulates information signals on the existing OAM radar waveform. In details, we first propose an OAM-based three-dimensional (3-D) super-resolution position estimation and rotation velocity detection method, which can accurately estimate the 3-D position and rotation velocity of multiple targets. Then, we derive the posterior Cramer-Rao bound (PCRB) of the OAM-based estimates and, finally, we analyze the transmission rate of the integrated communication system. To achieve the best trade-off between imaging and communication, the transmitted integrated OAM beams are optimized by means of an exhaustive search method. Both mathematical analysis and simulation results show that the proposed radar-centric joint OAM RadCom scheme can accurately estimate the 3-D position and rotation velocity of multiple targets while ensuring the transmission rate of the communication receiver, which can be regarded as an effective supplement to existing joint RadCom schemes.