In this paper we study multi-task oriented communication system via studying analog encoding method for multiple estimation tasks. The basic idea is to utilize the correlation among interested information required by different tasks and the feature of broadcast channel. For linear estimation tasks, we provide a low complexity algorithm for multi-user multi-task system based on orthogonal decomposition of subspaces. It is proved to be the optimal solution in some special cases, and for general cases, numerical results also show significant improvements over baseline methods. Further, we make a trial to migrate above method to neural networks based non-linear estimation tasks, and it also shows improvement in energy efficiency.