Integrating deep learning with clinical expertise holds great potential for addressing healthcare challenges and empowering medical professionals with improved diagnostic tools. However, the need for annotated medical images is often an obstacle to leveraging the full power of machine learning models. Our research demonstrates that by combining synthetic images, generated using diffusion models, with real images, we can enhance nonalcoholic fatty liver disease (NAFLD) classification performance. We evaluate the quality of the synthetic images by comparing two metrics: Inception Score (IS) and Fr\'{e}chet Inception Distance (FID), computed on diffusion-generated images and generative adversarial networks (GANs)-generated images. Our results show superior performance for the diffusion-generated images, with a maximum IS score of $1.90$ compared to $1.67$ for GANs, and a minimum FID score of $69.45$ compared to $99.53$ for GANs. Utilizing a partially frozen CNN backbone (EfficientNet v1), our synthetic augmentation method achieves a maximum image-level ROC AUC of $0.904$ on a NAFLD prediction task.