Utility functions or their equivalents (value functions, objective functions, loss functions, reward functions, preference orderings) are a central tool in most current machine learning systems. These mechanisms for defining goals and guiding optimization run into practical and conceptual difficulty when there are independent, multi-dimensional objectives that need to be pursued simultaneously and cannot be reduced to each other. Ethicists have proved several impossibility theorems that stem from this origin; those results appear to show that there is no way of formally specifying what it means for an outcome to be good for a population without violating strong human ethical intuitions (in such cases, the objective function is a social welfare function). We argue that this is a practical problem for any machine learning system (such as medical decision support systems or autonomous weapons) or rigidly rule-based bureaucracy that will make high stakes decisions about human lives: such systems should not use objective functions in the strict mathematical sense. We explore the alternative of using uncertain objectives, represented for instance as partially ordered preferences, or as probability distributions over total orders. We show that previously known impossibility theorems can be transformed into uncertainty theorems in both of those settings, and prove lower bounds on how much uncertainty is implied by the impossibility results. We close by proposing two conjectures about the relationship between uncertainty in objectives and severe unintended consequences from AI systems.