https://git.ecdf.ed.ac.uk/msc-23-24/s2044819
Multivariate time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc. Excellent anomaly detection models can greatly improve work efficiency and avoid major economic losses. However, with the development of technology, the increasing size and complexity of data, and the lack of labels for relevant abnormal data, it is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets. In this paper, we propose a hypergraph based spatiotemporal graph convolutional neural network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables through a hypergraph based dynamic graph structure learning module. On this basis, we further use the hypergraph based spatiotemporal graph convolutional network to utilize the learned hypergraph structure to effectively propagate and aggregate one-hop and multi-hop related node information in the convolutional network, thereby obtaining rich spatial information. Furthermore, through the multi-scale TCN dilated convolution module, the STGCN_hyper model can also capture the dependencies of features at different scales in the temporal dimension. An unsupervised anomaly detector based on PCA and GMM is also integrated into the STGCN_hyper model. Through the anomaly score of the detector, the model can detect the anomalies in an unsupervised way. Experimental results on multiple time series datasets show that our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection tasks. Our code is available on: