Neural networks and neuromorphic computing play pivotal roles in deep learning and machine vision. Due to their dissipative nature and inherent limitations, traditional semiconductor-based circuits face challenges in realizing ultra-fast and low-power neural networks. However, the spiking behavior characteristic of single flux quantum (SFQ) circuits positions them as promising candidates for spiking neural networks (SNNs). Our previous work showcased a JJ-Soma design capable of operating at tens of gigahertz while consuming only a fraction of the power compared to traditional circuits, as documented in [1]. This paper introduces a compact SFQ-based synapse design that applies positive and negative weighted inputs to the JJ-Soma. Using an RSFQ synapse empowers us to replicate the functionality of a biological neuron, a crucial step in realizing a complete SNN. The JJ-Synapse can operate at ultra-high frequencies, exhibits orders of magnitude lower power consumption than CMOS counterparts, and can be conveniently fabricated using commercial Nb processes. Furthermore, the network's flexibility enables modifications by incorporating cryo-CMOS circuits for weight value adjustments. In our endeavor, we have successfully designed, fabricated, and partially tested the JJ-Synapse within our cryocooler system. Integration with the JJ-Soma further facilitates the realization of a high-speed inference SNN.