Real-time bidding (RTB) plays a pivotal role in online advertising ecosystems. Advertisers employ strategic bidding to optimize their advertising impact while adhering to various financial constraints, such as the return-on-investment (ROI) and cost-per-click (CPC). Primarily focusing on bidding with fixed budget constraints, traditional approaches cannot effectively manage the dynamic budget allocation problem where the goal is to achieve global optimization of bidding performance across multiple channels with a shared budget. In this paper, we propose a hierarchical multi-agent reinforcement learning framework for multi-channel bidding optimization. In this framework, the top-level strategy applies a CPC constrained diffusion model to dynamically allocate budgets among the channels according to their distinct features and complex interdependencies, while the bottom-level strategy adopts a state-action decoupled actor-critic method to address the problem of extrapolation errors in offline learning caused by out-of-distribution actions and a context-based meta-channel knowledge learning method to improve the state representation capability of the policy based on the shared knowledge among different channels. Comprehensive experiments conducted on a large scale real-world industrial dataset from the Meituan ad bidding platform demonstrate that our method achieves a state-of-the-art performance.