In this paper, we propose the G raph Learning D ual G raph Convolutional Neural Network called GLDGCN based on the classical Graph Convolutional Neural Network by introducing dual convolutional layer and graph learning layer. We apply GLDGCN to the semi-supervised node classification task. Compared with the baseline methods, we achieve higher classification accuracy on three citation networks Citeseer, Cora and Pubmed, and we also analyze and discussabout selection of the hyperparameters and network depth. GLDGCN also perform well on the classic social network KarateClub and the new Wiki-CS dataset. For the insufficient ability of our algorithm to process large graph data during the experiment, we also introduce subgraph clustering and stochastic gradient descent technology into GCN and design a semi-supervised node classification algorithm based on the CLustering G raph Convolutional neural Network, which enables GCN to process large graph and improves its application value. We complete semi-supervised node classification experiments on two classical large graph which are PPI data sets (more than 50,000 nodes) and Reddit data sets (more than 200,000 nodes), and also perform well.