Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In this paper we propose Geometric SMOTE (G-SMOTE) as a generalization of the SMOTE data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of the input space, around each selected minority instance. While in the basic configuration this region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid and finally to a line segment, emulating, in the last case, the SMOTE mechanism. The performance of G-SMOTE is compared against multiple standard oversampling algorithms. We present empirical results that show a significant improvement in the quality of the generated data when G-SMOTE is used as an oversampling algorithm.