The intersection of deep learning and symbolic mathematics has seen rapid progress in recent years, exemplified by the work of Lample and Charton. They demonstrated that effective training of machine learning models for solving mathematical problems critically depends on high-quality, domain-specific datasets. In this paper, we address the computation of Gr\"obner basis using Transformers. While a dataset generation method tailored to Transformer-based Gr\"obner basis computation has previously been proposed, it lacked theoretical guarantees regarding the generality or quality of the generated datasets. In this work, we prove that datasets generated by the previously proposed algorithm are sufficiently general, enabling one to ensure that Transformers can learn a sufficiently diverse range of Gr\"obner bases. Moreover, we propose an extended and generalized algorithm to systematically construct datasets of ideal generators, further enhancing the training effectiveness of Transformer. Our results provide a rigorous geometric foundation for Transformers to address a mathematical problem, which is an answer to Lample and Charton's idea of training on diverse or representative inputs.