This paper explores advanced topics in complex multi-agent systems building upon our previous work. We examine four fundamental challenges in Multi-Agent Reinforcement Learning (MARL): non-stationarity, partial observability, scalability with large agent populations, and decentralized learning. The paper provides mathematical formulations and analysis of recent algorithmic advancements designed to address these challenges, with a particular focus on their integration with game-theoretic concepts. We investigate how Nash equilibria, evolutionary game theory, correlated equilibrium, and adversarial dynamics can be effectively incorporated into MARL algorithms to improve learning outcomes. Through this comprehensive analysis, we demonstrate how the synthesis of game theory and MARL can enhance the robustness and effectiveness of multi-agent systems in complex, dynamic environments.