We study the problem of sampling from high-dimensional distributions using Langevin Dynamics, a natural and popular variant of Gradient Descent where at each step, appropriately scaled Gaussian noise is added. The similarities between Langevin Dynamics and Gradient Descent leads to the natural question: if the distribution's log-density can be optimized from all initializations via Gradient Descent, given oracle access to the gradients, can we sample from the distribution using Langevin Dynamics? We answer this question in the affirmative, at low but appropriate temperature levels natural in the context of both optimization and real-world applications. As a corollary, we show we can sample from several new natural and interesting classes of non-log-concave densities, an important setting where we have relatively few examples.