The ability to reconstruct high-fidelity fluid flow fields from sparse sensor measurement is critical for many science and engineering applications, but remains a huge challenge. This challenge is caused by the large difference between the dimensions of the state space and the observational space, making the operator that provides the mapping from the state space to the observational space ill-conditioned and non-invertible. As a result, deriving the forward map from the observational space to the state space as the inverse of the measurement operator is nearly impossible. While traditional methods, including sparse optimization, data assimilation, or machine learning based regressive reconstruction, are available, they often struggle with generalization and computational efficiency, particularly when non-uniform or varying discretization of the domain are considered. In this work, we propose FLRONet, a novel operator learning framework designed to reconstruct full-state flow fields from sparse sensor measurements in space and time. FLRONet utilizes a branch-trunk architecture, where the branch network integrates sensor observations from multiple time instances, and the trunk network encodes the entire temporal domain. This design allows FLRONet to achieve highly accurate, discretization-independent reconstructions at any time within the observation window. Although the popular three-dimensional Fourier Neural Operator offers similar functionalities, our results show that FLRONet surpasses it in both accuracy and efficiency. FLRONet not only achieves superior performance in approximating the true operator but also exhibits significantly faster inference at high-fidelity discretizations.