We consider the capacity of \emph{treelike committee machines} (TCM) neural networks. Relying on Random Duality Theory (RDT), \cite{Stojnictcmspnncaprdt23} recently introduced a generic framework for their capacity analysis. An upgrade based on the so-called \emph{partially lifted} RDT (pl RDT) was then presented in \cite{Stojnictcmspnncapliftedrdt23}. Both lines of work focused on the networks with the most typical, \emph{sign}, activations. Here, on the other hand, we focus on networks with other, more general, types of activations and show that the frameworks of \cite{Stojnictcmspnncaprdt23,Stojnictcmspnncapliftedrdt23} are sufficiently powerful to enable handling of such scenarios as well. In addition to the standard \emph{linear} activations, we uncover that particularly convenient results can be obtained for two very commonly used activations, namely, the \emph{quadratic} and \emph{rectified linear unit (ReLU)} ones. In more concrete terms, for each of these activations, we obtain both the RDT and pl RDT based memory capacities upper bound characterization for \emph{any} given (even) number of the hidden layer neurons, $d$. In the process, we also uncover the following two, rather remarkable, facts: 1) contrary to the common wisdom, both sets of results show that the bounding capacity decreases for large $d$ (the width of the hidden layer) while converging to a constant value; and 2) the maximum bounding capacity is achieved for the networks with precisely \textbf{\emph{two}} hidden layer neurons! Moreover, the large $d$ converging values are observed to be in excellent agrement with the statistical physics replica theory based predictions.