Feature selection is essential for efficient data mining and sometimes encounters the positive-unlabeled (PU) learning scenario, where only a few positive labels are available, while most data remains unlabeled. In certain real-world PU learning tasks, data subjected to adequate feature selection often form clusters with concentrated positive labels. Conventional feature selection methods that treat unlabeled data as negative may fail to capture the statistical characteristics of positive data in such scenarios, leading to suboptimal performance. To address this, we propose a novel feature selection method based on the cluster assumption in PU learning, called FSCPU. FSCPU formulates the feature selection problem as a binary optimization task, with an objective function explicitly designed to incorporate the cluster assumption in the PU learning setting. Experiments on synthetic datasets demonstrate the effectiveness of FSCPU across various data conditions. Moreover, comparisons with 10 conventional algorithms on three open datasets show that FSCPU achieves competitive performance in downstream classification tasks, even when the cluster assumption does not strictly hold.