Yield forecasting, the science of predicting agricultural productivity before the crop harvest occurs, helps a wide range of stakeholders make better decisions around agricultural planning. This study aims to investigate whether machine learning-based yield prediction models can capably predict Kharif season rice yields at the district level in India several months before the rice harvest takes place. The methodology involved training 19 machine learning models such as CatBoost, LightGBM, Orthogonal Matching Pursuit, and Extremely Randomized Trees on 20 years of climate, satellite, and rice yield data across 247 of Indian rice-producing districts. In addition to model-building, a dynamic dashboard was built understand how the reliability of rice yield predictions varies across districts. The results of the proof-of-concept machine learning pipeline demonstrated that rice yields can be predicted with a reasonable degree of accuracy, with out-of-sample R2, MAE, and MAPE performance of up to 0.82, 0.29, and 0.16 respectively. These results outperformed test set performance reported in related literature on rice yield modeling in other contexts and countries. In addition, SHAP value analysis was conducted to infer both the importance and directional impact of the climate and remote sensing variables included in the model. Important features driving rice yields included temperature, soil water volume, and leaf area index. In particular, higher temperatures in August correlate with increased rice yields, particularly when the leaf area index in August is also high. Building on the results, a proof-of-concept dashboard was developed to allow users to easily explore which districts may experience a rise or fall in yield relative to the previous year.