Hybrid model predictive control with both continuous and discrete variables is widely applicable to robotic control tasks, especially those involving contact with the environment. Due to the combinatorial complexity, the solving speed of hybrid MPC can be insufficient for real-time applications. In this paper, we proposed a hybrid MPC solver based on Generalized Benders Decomposition (GBD). The algorithm enumerates and stores cutting planes online inside a finite buffer. After a short cold-start phase, the stored cuts provide warm-starts for the new problem instances to enhance the solving speed. Despite the disturbance and randomly changing environment, the solving speed maintains. Leveraging on the sparsity of feasibility cuts, we also propose a fast algorithm for Benders master problems. Our solver is validated through controlling a cart-pole system with randomly moving soft contact walls, and a free-flying robot navigating around obstacles. The results show that with significantly less data than previous works, the solver reaches competitive speeds to the off-the-shelf solver Gurobi despite the Python overhead.