We have explored different methods of improving the accuracy of a Naive Bayes classifier for sentiment analysis. We observed that a combination of methods like negation handling, word n-grams and feature selection by mutual information results in a significant improvement in accuracy. This implies that a highly accurate and fast sentiment classifier can be built using a simple Naive Bayes model that has linear training and testing time complexities. We achieved an accuracy of 88.80% on the popular IMDB movie reviews dataset.