The aim of this study is to detect man-made cartographic objects in high-resolution satellite images. New generation satellites offer a sub-metric spatial resolution, in which it is possible (and necessary) to develop methods at object level rather than at pixel level, and to exploit structural features of objects. With this aim, a method to generate structural object models from manually segmented images has been developed. To generate the model from non-segmented images, extraction of the objects from the sample images is required. A hybrid method of extraction (both in terms of input sources and segmentation algorithms) is proposed: A region based segmentation is applied on a 10 meter resolution multi-spectral image. The result is used as marker in a "marker-controlled watershed method using edges" on a 2.5 meter resolution panchromatic image. Very promising results have been obtained even on images where the limits of the target objects are not apparent.