Fluid dynamics problems are characterized by being multidimensional and nonlinear, causing the experiments and numerical simulations being complex, time-consuming and monetarily expensive. In this sense, there is a need to find new ways to obtain data in a more economical manner. Thus, in this work we study the application of time series forecasting to fluid dynamics problems, where the aim is to predict the flow dynamics using only past information. We focus our study on models based on deep learning that do not require a high amount of data for training, as this is the problem we are trying to address. Specifically in this work we have tested three autoregressive models where two of them are fully based on deep learning and the other one is a hybrid model that combines modal decomposition with deep learning. We ask these models to generate $200$ time-ahead predictions of two datasets coming from a numerical simulation and experimental measurements, where the latter is characterized by being turbulent. We show how the hybrid model generates more reliable predictions in the experimental case, as it is physics-informed in the sense that the modal decomposition extracts the physics in a way that allows us to predict it.