This paper introduces the independent choice logic, and in particular the "single agent with nature" instance of the independent choice logic, namely ICLdt. This is a logical framework for decision making uncertainty that extends both logic programming and stochastic models such as influence diagrams. This paper shows how the representation of a decision problem within the independent choice logic can be exploited to cut down the combinatorics of dynamic programming. One of the main problems with influence diagram evaluation techniques is the need to optimise a decision for all values of the 'parents' of a decision variable. In this paper we show how the rule based nature of the ICLdt can be exploited so that we only make distinctions in the values of the information available for a decision that will make a difference to utility.