We study optimal transport problems in which finite-valued quantities of interest evolve dynamically over time in a stationary fashion. Mathematically, this is a special case of the general optimal transport problem in which the distributions under study represent stationary processes and the cost depends on a finite number of time points. In this setting, we argue that one should restrict attention to stationary couplings, also known as joinings, which have close connections with long run average cost. We introduce estimators of both optimal joinings and the optimal joining cost, and we establish their consistency under mild conditions. Under stronger mixing assumptions we establish finite-sample error rates for the same estimators that extend the best known results in the iid case. Finally, we extend the consistency and rate analysis to an entropy-penalized version of the optimal joining problem.