As communication systems are foreseen to enable new services such as joint communication and sensing and utilize parts of the sub-THz spectrum, the design of novel waveforms that can support these emerging applications becomes increasingly challenging. We present in this work an end-to-end learning approach to design waveforms through joint learning of pulse shaping and constellation geometry, together with a neural network (NN)-based receiver. Optimization is performed to maximize an achievable information rate, while satisfying constraints on out-of-band emission and power envelope. Our results show that the proposed approach enables up to orders of magnitude smaller adjacent channel leakage ratios (ACLRs) with peak-to-average power ratios (PAPRs) competitive with traditional filters, without significant loss of information rate on an additive white Gaussian noise (AWGN) channel, and no additional complexity at the transmitter.